Edit Content
Bizwit-Logo-Final

Bizwit Research & Consulting LLP is a global provider of business intelligence & consulting services. We have a strong primary base of key industry leaders along with the chain of industry analysts to analyze the market trends and its future impact in order to estimates and forecast different business segments and markets. 

Global Floating Wind Power Market is to reach USD 10.44 billion by the end of 2029.

Global Floating Wind Power Market Size Study & Forecast, by Water Depth (Shallow Water, Transitional Water and Deep Water) by Turbine Capacity (Up to 3 MW, 3 MW - 5 MW and Above 5 MW) and Regional Analysis, 2022-2029

Product Code: EPRE-82232061
Publish Date: 5-05-2023
Page: 200

Global Floating Wind Power Market is valued at approximately USD 0.29 billion in 2021 and is anticipated to grow with a healthy growth rate of more than 56.5% over the forecast period 2022-2029. Floating wind power is used at offshore locations where a fixed foundation is problematic due to excessively deep water. In the majority of countries throughout the world, offshore wind energy makes a significant contribution to the renewable energy goal. The Floating Wind Power Market is expanding because of factors such as an increasing shift toward clean energy generation, and rising investments in sustainable energy development.

Renewable energy sources are being adopted by developing and poor nations as a result of the rise in power demand and carbon emissions. Wind farms have been developed because renewable energy sources, such as solar and wind, are more effective at lowering carbon emissions. Offshore wind farms now exist due to technological development and study. The demand for floating wind farms has therefore been driven by renewable energy sources. The International Energy Agency’s (IEA) 2019 data indicates that offshore wind, including floating wind power, can provide 11 times as much electricity as the world needs and could draw in USD 1 trillion in investments by 2040. According to the IEA Global Energy Investment Report 2021, renewable energy will account for the largest portion of the total USD 530 million, or almost 70%, which may be utilized to build a new power plant. Consumer demand for carbon-neutral electricity has sparked technological advancement and a solid supply chain as the energy vision for the future. In addition, rising government participation would create new opportunities for the market. However, high capital investments may halt market growth.

The key regions considered for the Global Floating Wind Power Market study includes Asia Pacific, North America, Europe, Latin America, and Rest of the World. North America dominated the market in terms of revenue, owing to the rising investment in the adoption of renewable energy. Whereas Asia Pacific is expected to grow with the highest CAGR during the forecast period, owing to factors such as rising development of wind farms, and rising investment in renewable energy.

Major market player included in this report are:
Siemens Gamesa Renewable Energy S.A.
MHI Vestas Japan Co. Ltd
FlowOcean AB
Engie Energy
ABB LTD
General Electric
Ming Yang Smart Energy Group Co.
Nordex SE
GoldWind
Envision Energy

Recent Developments in the Market:
Ø In June 2021, Hitachi ABB Power Grids introduced a line of transformer solutions built to withstand the physically demanding circumstances on floating structures as well as the harsh environment. The decision will immediately help the development of a sustainable energy future by enabling a considerably greater capacity of wind to be professionally gathered and incorporated into the global energy system.
Ø In June 2021, Siemens Gamesa and Siemens Energy signed an MoU with Odfjell Oceanwind. To supply power to microgrid or off-grid users, Odfjell Oceanwind creates, acquires, and manages a fleet of floating units.

Global Floating Wind Power Market Report Scope:
Historical Data 2019-2020-2021
Base Year for Estimation 2021
Forecast period 2022-2029
Report Coverage Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
Segments Covered Water Depth, Turbine Capacity, Region
Regional Scope North America; Europe; Asia Pacific; Latin America; Rest of the World
Customization Scope Free report customization (equivalent up to 8 analyst’s working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and Water Depth offerings of key players. The detailed segments and sub-segment of the market are explained below:

By Water Depth:
Shallow Water
Transitional Water
Deep Water

By Turbine Capacity:
Up to 3 MW
3 MW – 5 MW
Above 5 MW

By Region:
North America
U.S.
Canada
Europe
UK
Germany
France
Spain
Italy
ROE
Asia Pacific
China
India
Japan
Australia
South Korea
RoAPAC
Latin America
Brazil
Mexico
RoLA
Rest of the World

Chapter 1. Executive Summary
1.1. Market Snapshot
1.2. Global & Segmental Market Estimates & Forecasts, 2019-2029 (USD Billion)
1.2.1. Floating Wind Power Market, by Region, 2019-2029 (USD Billion)
1.2.2. Floating Wind Power Market, by Water Depth, 2019-2029 (USD Billion)
1.2.3. Floating Wind Power Market, by Turbine Capacity, 2019-2029 (USD Billion)
1.3. Key Trends
1.4. Estimation Methodology
1.5. Research Assumption
Chapter 2. Global Floating Wind Power Market Definition and Scope
2.1. Objective of the Study
2.2. Market Definition & Scope
2.2.1. Scope of the Study
2.2.2. Industry Evolution
2.3. Years Considered for the Study
2.4. Currency Conversion Rates
Chapter 3. Global Floating Wind Power Market Dynamics
3.1. Floating Wind Power Market Impact Analysis (2019-2029)
3.1.1. Market Drivers
3.1.1.1. Increasing Shift Toward Clean Energy Generation
3.1.1.2. Rising Investments in the Sustainable Energy Development
3.1.2. Market Challenges
3.1.2.1. High Capital Investments
3.1.3. Market Opportunities
3.1.3.1. Rising government participation
3.1.3.2. Rising technological advancement
Chapter 4. Global Floating Wind Power Market Industry Analysis
4.1. Porter’s 5 Force Model
4.1.1. Bargaining Power of Suppliers
4.1.2. Bargaining Power of Buyers
4.1.3. Threat of New Entrants
4.1.4. Threat of Substitutes
4.1.5. Competitive Rivalry
4.2. Futuristic Approach to Porter’s 5 Force Model (2019-2029)
4.3. PEST Analysis
4.3.1. Political
4.3.2. Economical
4.3.3. Social
4.3.4. Technological
4.4. Top investment opportunity
4.5. Top winning strategies
4.6. Industry Experts Prospective
4.7. Analyst Recommendation & Conclusion
Chapter 5. Risk Assessment: COVID-19 Impact
5.1. Assessment of the overall impact of COVID-19 on the industry
5.2. Pre COVID-19 and post COVID-19 Market scenario
Chapter 6. Global Floating Wind Power Market, by Water Depth
6.1. Market Snapshot
6.2. Global Floating Wind Power Market by Water Depth , Performance – Potential Analysis
6.3. Global Floating Wind Power Market Estimates & Forecasts by Water Depth 2019-2029 (USD Billion)
6.4. Floating Wind Power Market, Sub Segment Analysis
6.4.1. Shallow Water
6.4.2. Transitional Water
6.4.3. Deep Water
Chapter 7. Global Floating Wind Power Market, by Turbine Capacity
7.1. Market Snapshot
7.2. Global Floating Wind Power Market by Turbine Capacity, Performance – Potential Analysis
7.3. Global Floating Wind Power Market Estimates & Forecasts by Turbine Capacity 2019-2029 (USD Billion)
7.4. Floating Wind Power Market, Sub Segment Analysis
7.4.1. Up to 3 MW
7.4.2. 3 MW – 5 MW
7.4.3. Above 5 MW
Chapter 8. Global Floating Wind Power Market, Regional Analysis
8.1. Floating Wind Power Market, Regional Market Snapshot
8.2. North America Floating Wind Power Market
8.2.1. U.S. Floating Wind Power Market
8.2.1.1. Water Depth breakdown estimates & forecasts, 2019-2029
8.2.1.2. Turbine Capacity breakdown estimates & forecasts, 2019-2029
8.2.2. Canada Floating Wind Power Market
8.3. Europe Floating Wind Power Market Snapshot
8.3.1. U.K. Floating Wind Power Market
8.3.2. Germany Floating Wind Power Market
8.3.3. France Floating Wind Power Market
8.3.4. Spain Floating Wind Power Market
8.3.5. Italy Floating Wind Power Market
8.3.6. Rest of Europe Floating Wind Power Market
8.4. Asia-Pacific Floating Wind Power Market Snapshot
8.4.1. China Floating Wind Power Market
8.4.2. India Floating Wind Power Market
8.4.3. Japan Floating Wind Power Market
8.4.4. Australia Floating Wind Power Market
8.4.5. South Korea Floating Wind Power Market
8.4.6. Rest of Asia Pacific Floating Wind Power Market
8.5. Latin America Floating Wind Power Market Snapshot
8.5.1. Brazil Floating Wind Power Market
8.5.2. Mexico Floating Wind Power Market
8.5.3. Rest of Latin America Floating Wind Power Market
8.6. Rest of The World Floating Wind Power Market

Chapter 9. Competitive Intelligence
9.1. Top Market Strategies
9.2. Company Profiles
9.2.1. Siemens Gamesa Renewable Energy S.A.
9.2.1.1. Key Information
9.2.1.2. Overview
9.2.1.3. Financial (Subject to Data Availability)
9.2.1.4. Product Summary
9.2.1.5. Recent Developments
9.2.2. MHI Vestas Japan Co. Ltd
9.2.3. FlowOcean AB
9.2.4. Engie Energy
9.2.5. ABB LTD
9.2.6. General Electric
9.2.7. Ming Yang Smart Energy Group Co.
9.2.8. Nordex SE
9.2.9. GoldWind
9.2.10. Envision Energy
Chapter 10. Research Process
10.1. Research Process
10.1.1. Data Mining
10.1.2. Analysis
10.1.3. Market Estimation
10.1.4. Validation
10.1.5. Publishing
10.2. Research Attributes
10.3. Research Assumption

At Bizwit Research and Consultancy, we employ a thorough and iterative research methodology with the goal of minimizing discrepancies, ensuring the provision of highly accurate estimates and predictions over the forecast period. Our approach involves a combination of bottom-up and top-down strategies to effectively segment and estimate quantitative aspects of the market, utilizing our proprietary data & AI tools. Our Proprietary Tools allow us for the creation of customized models specific to the research objectives. This enables us to develop tailored statistical models and forecasting algorithms to estimate market trends, future growth, or consumer behavior. The customization enhances the accuracy and relevance of the research findings.
We are dedicated to clearly communicating the purpose and objectives of each research project in the final deliverables. Our process begins by identifying the specific problem or challenge our client wishes to address, and from there, we establish precise research questions that need to be answered. To gain a comprehensive understanding of the subject matter and identify the most relevant trends and best practices, we conduct an extensive review of existing literature, industry reports, case studies, and pertinent academic research.
Critical elements of methodology employed for all our studies include:
Data Collection:
To determine the appropriate methods of data collection based on the research objectives, we consider both primary and secondary sources. Primary data collection involves gathering information directly from various industry experts in core and related fields, original equipment manufacturers (OEMs), vendors, suppliers, technology developers, alliances, and organizations. These sources encompass all segments of the value chain within the specific industry. Through in-depth interviews, we engage with key industry participants, subject-matter experts, C-level executives of major market players, industry consultants, and other relevant experts. This allows us to obtain and validate critical qualitative and quantitative information while evaluating market prospects. AI and Big Data are instrumental in our primary research, providing us with powerful tools to collect, analyze, and derive insights from data efficiently. These technologies contribute to the advancement of research methodologies, enabling us to make data-driven decisions and uncover valuable findings.
In addition to primary sources, we extensively utilize secondary sources to enhance our research. These include directories, databases, journals focusing on related industries, company newsletters, and information portals such as Bloomberg, D&B Hoovers, and Factiva. These secondary sources enable us to identify and gather valuable information for our comprehensive, technical, market-oriented, and commercial study of the market. Additionally, we utilize AI algorithms to automate the collection of vast amounts of data from various sources such as surveys, social media platforms, online transactions, and web scraping. And employ Big Data technologies for storage and processing of large datasets, ensuring that no valuable information is missed during the data collection process.
Data Analysis:
Our team of experts carefully examine the gathered data using suitable statistical techniques and qualitative analysis methods. For quantitative analysis, we employ descriptive statistics, regression analysis, and other advanced statistical methods, depending on the characteristics of the data. This analysis may also incorporate the utilization of AI tools and big data analysis techniques to extract meaningful insights.
To ensure the accuracy and reliability of our findings, we extensively leverage data science techniques, which help us minimize discrepancies and uncertainties in our analysis. We employ Data Science to clean and preprocess the data, ensuring its quality and reliability. This involves handling missing data, removing outliers, standardizing variables, and transforming data into suitable formats for analysis. The application of data science techniques enhances our accuracy, efficiency, and depth of analysis, enabling us to stay competitive in dynamic market environments.
Market Size Estimation:
Our proprietary data tools play a crucial role in deriving our market estimates and forecasts. Each study involves the creation of a unique and customized model. The model incorporates the gathered information on market dynamics, technology landscape, application development, and pricing trends. AI techniques, such as machine learning and deep learning, aid us to analyze patterns within the data to identify correlations, trends, and relationships. By recognizing patterns in consumer behavior, purchasing habits, or market dynamics, our AI algorithms aid us in more precise estimations of market size. These factors are simultaneously analyzed within the model, allowing for a comprehensive assessment. To quantify their impact over the forecast period, correlation, regression, and time series analysis are employed.
To estimate and validate the market size, we employ both top-down and bottom-up approaches. The preference is given to a bottom-up approach, where key regional markets are analyzed as separate entities. This data is then integrated to obtain global estimates. This approach is crucial as it provides a deep understanding of the industry and helps minimize errors.
In our forecasting process, we consider various parameters such as economic tools, technological analysis, industry experience, and domain expertise. By taking all these factors into account, we strive to produce accurate and reliable market forecasts. When forecasting, we take into consideration several parameters, which include:
Market driving trends and favorable economic conditions
Restraints and challenges that are expected to be encountered during the forecast period.
Anticipated opportunities for growth and development
Technological advancements and projected developments in the market
Consumer spending trends and dynamics
Shifts in consumer preferences and behaviors.
The current state of raw materials and trends in supply versus pricing
Regulatory landscape and expected changes or developments.
The existing capacity in the market and any expected additions or expansions up to the end of the forecast period.
To assess the market impact of these parameters, we assign weights to each one and utilize weighted average analysis. This process allows us to quantify their influence on the market and derive an expected growth rate for the forecasted period. By considering these various factors and applying a weighted analysis approach, we strive to provide accurate and reliable market forecasts.
Insight Generation & Report Presentation:
After conducting the research, our experts analyze the findings in relation to the research objectives and the specific needs of the client. They generate valuable insights and recommendations that directly address the client’s business challenges. These insights are carefully connected to the research findings to provide a comprehensive understanding.
Next, we create a well-structured research report that effectively communicates the research findings, insights, and recommendations to the client. To enhance clarity and comprehension, we utilize visual aids such as charts, graphs, and tables. These visual elements are employed to present the data in an engaging and easily understandable format, ensuring that the information is accessible and visually appealing to the client. Our aim is to deliver a clear and concise report that conveys the research findings effectively and provides actionable recommendations to meet the client’s specific needs.

Need Assistance

Contact Person -
Krishant Mennon
Call us @
+ 91 99931 15879
Email: sales@bizwitresearch.com

Checkout

Why Choose Us?

Quality over Quantity

Backed by 60+ paid data sources our reports deliver crisp insights with no compromise quality.

Analyst Support

24x7 Chat Support plus
free analyst hours with every purchase

Flawless Methodology

Our 360-degree approach of market study, our research methods leave stones unturned.

Enquiry Now